Positive solutions to multi-critical elliptic problems

نویسندگان

چکیده

In this paper, we investigate the existence of multiple positive solutions to following multi-critical elliptic problem $$\begin{aligned} \left\{ \begin{aligned} -\Delta u&=\lambda |u|^{p-2}u +\sum _{i=1}^k(|x|^{-(N-\alpha _i)}*|u|^{2^*_i})|u|^{2^*_i-2}u\quad \mathrm{in}\quad \Omega ,\\&u;\in H^1_0(\Omega )\\ \end{aligned}\right. \end{aligned}$$ (0.1) in connection with topology bounded domain \(\Omega \subset {\mathbb {R}}^N, \,N\ge 4\), where \(\lambda >0\), \(2^*_i=\frac{N+\alpha _i}{N-2}\) \(N-4<\alpha _i0\) such if \(0<\lambda <\lambda ^*\) possesses at least \(cat_\Omega (\Omega )\) solutions. also study uniqueness for limit (0.1).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Solutions of Critical Quasilinear Elliptic Problems in General Domains

We consider a certain class of quasilinear elliptic equations with a term in the critical growth range. We prove the existence of positive solutions in bounded and unbounded domains. The proofs involve several generalizations of standard variational arguments.

متن کامل

Critical points and positive solutions of singular elliptic boundary value problems ✩

Usually we do not think there is variational structure for singular elliptic boundary value problems, so it cannot be considered by using critical points theory. In this paper, we use critical theory on certain convex closed sets to solve positive solutions for singular elliptic boundary value problems, especially use the ordinary differential equation theory of Banach spaces to obtain new resu...

متن کامل

Positive Entire Solutions of Quasilinear Elliptic Problems via Nonsmooth Critical Point Theory

We prove that a variational quasilinear elliptic equation admits a positive weak solution on R n. Our results extend to a wider class of equations some known results about semilinear and quasilinear problems: all the coefficients involved (also the ones in the principal part) depend both on the variable x and on the unknown function u; moreover, they are not homogeneous with respect to u.

متن کامل

Asymptotic Behavior of Positive Solutions of Some Quasilinear Elliptic Problems

We discuss the asymptotic behavior of positive solutions of the quasilinear elliptic problem −∆pu = au p−1 − b(x)u, u|∂Ω = 0 as q → p − 1 + 0 and as q → ∞ via a scale argument. Here ∆p is the p-Laplacian with 1 < p < ∞ and q > p−1. If p = 2, such problems arise in population dynamics. Our main results generalize the results for p = 2, but some technical difficulties arising from the nonlinear d...

متن کامل

Multiple Positive Solutions for Elliptic Boundary Value Problems

We extend ODE results of Henderson and Thompson, see [10], to a large class of boundary value problems for both ODEs and PDEs. Our method of proof combines upper and lower solutions with degree theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali di Matematica Pura ed Applicata

سال: 2022

ISSN: ['1618-1891', '0373-3114']

DOI: https://doi.org/10.1007/s10231-022-01262-2